Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559133

RESUMO

The ascending somatosensory pathways convey crucial information about pain, touch, itch, and body part movement from peripheral organs to the central nervous system. Despite a significant need for effective therapeutics modulating pain and other somatosensory modalities, clinical translation remains challenging, which is likely related to species-specific features and the lack of in vitro models to directly probe and manipulate this polysynaptic pathway. Here, we established human ascending somatosensory assembloids (hASA)- a four-part assembloid completely generated from human pluripotent stem cells that integrates somatosensory, spinal, diencephalic, and cortical organoids to model the human ascending spinothalamic pathway. Transcriptomic profiling confirmed the presence of key cell types in this circuit. Rabies tracing and calcium imaging showed that sensory neurons connected with dorsal spinal cord projection neurons, which ascending axons further connected to thalamic neurons. Following noxious chemical stimulation, single neuron calcium imaging of intact hASA demonstrated coordinated response, while four-part concomitant extracellular recordings and calcium imaging revealed synchronized activity across the assembloid. Loss of the sodium channel SCN9A, which causes pain insensitivity in humans, disrupted synchrony across the four-part hASA. Taken together, these experiments demonstrate the ability to functionally assemble the essential components of the human sensory pathway. These findings could both accelerate our understanding of human sensory circuits and facilitate therapeutic development.

2.
Nature ; 628(8009): 818-825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658687

RESUMO

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Assuntos
Transtorno Autístico , Síndrome do QT Longo , Oligonucleotídeos Antissenso , Sindactilia , Animais , Feminino , Humanos , Masculino , Camundongos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Movimento Celular/efeitos dos fármacos , Dendritos/metabolismo , Éxons/genética , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citologia , Sindactilia/tratamento farmacológico , Sindactilia/genética , Interneurônios/citologia , Interneurônios/efeitos dos fármacos
3.
Commun Biol ; 6(1): 233, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864129

RESUMO

Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics.


Assuntos
COVID-19 , Zinco , Humanos , Colorimetria , COVID-19/diagnóstico , SARS-CoV-2/genética , Primers do DNA , Íons
4.
Stem Cell Res ; 40: 101563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494448

RESUMO

Development of neural tube has been extensively modeled in vitro using human pluripotent stem cells (hPSCs) that are able to form radially organized cellular structures called neural rosettes. While a great amount of research has been done using neural rosettes, studies have only inadequately addressed how rosettes are formed and what the molecular mechanisms and pathways involved in their formation are. Here we address this question by detailed analysis of the expression of pluripotency and differentiation-associated proteins during the early onset of differentiation of hPSCs towards neural rosettes. Additionally, we show that the BMP signaling is likely contributing to the formation of the complex cluster of neural rosettes and its inhibition leads to the altered expression of PAX6, SOX2 and SOX1 proteins and the rosette morphology. Finally, we provide evidence that the mechanism of neural rosettes formation in vitro is reminiscent of the process of secondary neurulation rather than that of primary neurulation in vivo. Since secondary neurulation is a largely unexplored process, its understanding will ultimately assist the development of methods to prevent caudal neural tube defects in humans.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Tubo Neural/embriologia , Neurulação , Células-Tronco Pluripotentes/citologia , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA